DEFINITION (RELATIVE SIMPLICIAL HOMOLOGY) Let x be a s-complex & A a s-subcomplex We define the guotient chain complex $\Delta_{p}(x,A) = \Delta_{p}(x)$ $\Delta_{p}(A)$ relative simplicial chairs with 2 restrictions of simplicial boundary maps. The homologs of this chain complex is denoted by Hp (X,A). THEOREM (maps that give the &-complex structure the characteristic map of any psimplex in a D-complex decomposition of X may be viewed as a singular p simplex, hence we have the inclusion chain map 1c $\longrightarrow \Delta p(X,A) \rightarrow \Delta p_{-1}(X,A) \rightarrow \Delta p_{-2}(X,A) \rightarrow .$ $fic \qquad fic \qquad fic \qquad fic \\ \neg \Rightarrow Sp(X,A) \rightarrow Sp_1(X,A) \rightarrow Sp_2(X,A) \rightarrow .$

The induced homomorphism $H_{p}(X_{A}) \rightarrow H_{p}(X_{A})$ is an isomorphism. taking A=\$, we obtain the equivalence of absolute singular and simplicial homology. Proof (i) special case: $A = \phi, X$ is finite-dimensional We denote by $X^{(k)}$ the k-skeleton of X. then we have the following LES $\neg H_{p \rightarrow 1} \left(\chi(k) \chi(k-1) \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k-1)} \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k)} \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k)} \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k-1)} \right) \rightarrow$ $\begin{array}{ccc} & & & & \\ & & & \\ \neg H_{p+1}\left(\chi^{(k)}\chi^{(k-1)}\right) \rightarrow H_{p}\left(\chi^{(k-1)}\right) \rightarrow H_{p}\left(\chi^{(k$ First we show that D& A are an isomorphism. Note that $\Delta_p(x^{(k)}, x^{(k-1)}) = 0$ for $p \neq k$ & furthermore, $\Delta_{K}(x^{(k)}, x^{(k-1)})$ is a free abelian group génerated by K-simplices in X

Hence,
$$H_{p}^{\Delta}(x^{(k)}, x^{(k-1)}) = \int_{m}^{\infty} \int_{m}^{p} Z p^{\neq k} \int_{m}^{p} Z p^{\neq k}$$

To compute $H_{p}(x^{(k)}, x^{(k-1)})$ note that
 $x^{(k-1)}$ is a strong deformation retract
of its neighborhood in $x^{(k-2)}$.
(proposition A.5. on page 523 in Hatcher).
So
 $H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{\cong} H_{p}(x^{(k)})$.
 $x^{(k)}_{\chi^{(k-1)}} = \bigvee_{m}^{\infty} S^{k} \xrightarrow{\cong} \int_{m}^{\infty} \chi^{(k-1)} \int_{m}^{\infty} Z p^{\neq k} \int_{m}^{p} Z p^{\neq k}$
 $H_{p}(x^{(k)}, x^{(k-1)}) = H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{K} p^{\neq k}$
 $H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{\cong} H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{K} p^{\neq k}$
 $H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{K} H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{K} p^{\neq k}$
 $H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{K} H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{K} p^{\neq k}$
 $H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{K} H_{p}(x^{(k)}, x^{(k-1)}) \xrightarrow{K} p^{\neq k}$

 $\exists H_{p+1} \left(\chi^{(k)} \chi^{(k-1)} \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k-1)} \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k)} \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k)} \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k-1)} \right) \rightarrow H_{p}^{\Delta} \left(\chi^{(k-1)}$ $\frac{2}{4} + \frac{1}{2} + \frac{1}$ So (1) & (1) due isomorphisms. All homology groups of the empty set are trivial. Assume that $H^{\circ}_{\rho}(x^{(g)}) \rightarrow H_{\rho}(x^{(j)})$ are isomorphisms for isk-1 and for all p. By induction on K we may assume that the second (2) and the fifth (5) map are isomorphisms as well. then 3 is an isomorphism by the five-lemma. mfinite dimensional, $A=\phi$ (ii) X FACT À compact set mi X can meet X in only finitely many open simplices of X, ie simplices

with their poper faces delated.
Proof of the fact
IF a compact set C intersected
infinitely many open simplices,
it would contain an infinite
sequence of points
$$X_1$$
 each lying
in a different open simplex. Then
 $U_1 = X - U = \sum_{i=1}^{n} \sum_{j \neq i}^{n} \sum_{i \neq i}^{n} \neq$

c is a finite linear combination of singular simplices, whose images are compact subsets of X. So the images of simplices are a compact sit. Using the fact above, we deduce that these images are in X(k) for k big chough. =) $C \in Sp(x^{(k)})$. By (i) we know that $H_p^{\diamond}(X^{(\kappa)}) \rightarrow H_p(X^{(\kappa)})$ is an isomorphism, so $v \in \Delta_p(x^{(\kappa)})$ exists, av=0 such that [v] gets mapped to $[C] \in H_p(X^{(\kappa)})$. Now $V \in \Delta_p(x^{(k)}) \subset \Delta_p(x) \&$ [v] is mapped to [c] = Mp(X).

 $H_{p}^{A}\left(\chi^{(k)}\right) \longrightarrow H_{p}\left(\chi^{(k)}\right)$ $H_{p}^{\Delta}(x) \longrightarrow H_{p}(x)$

(2) $H_p^{\Delta}(x) \rightarrow H_p(x)$ is injective Let CE Ap(x), [C] is in the kernel of the above homomorphism. This means that is a boundary of some singular (p+1)-chain be Sp+1(X). Both chains, c and b, lie in $\chi^{(\kappa)}$ for a large enough & (the argument is the same as before). this means that c represents an element in the kernel of $\mathcal{L}^{(i)}$ $H_p^{\Delta}(\chi^{(k)}) \xrightarrow{\cong} H_p(\chi^{(k)})$ $[c] \mapsto 0$

$$= \sum [c] = 0 \in H_{p}^{\Delta}(x^{(k)}) \Rightarrow [c] = 0$$
in $H_{p}^{\Delta}(k)$.
(i.i.i) X, A general, A c.X. Then LES
for (x, A) yields
$$= H_{p+1}^{\Delta}(x, A) \rightarrow H_{p}^{\Delta}(A) \rightarrow H_{p}^{\Delta}(x, A) \rightarrow H_{p}^{\Delta}(A) \Rightarrow$$

$$= \int_{a}^{a} (x, A) \rightarrow H_{p}(A) \rightarrow H_{p}^{\Delta}(x) \rightarrow H_{p}^{\Delta}(x, A) \rightarrow H_{p}^{\Delta}(A) \Rightarrow$$

$$= \int_{a}^{a} (x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(x) \rightarrow H_{p}(x, A) \rightarrow H_{p}(A) \Rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(x) \rightarrow H_{p}(x, A) \rightarrow H_{p}(A) \Rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(x) \rightarrow H_{p}(x, A) \rightarrow H_{p}(A) \Rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(x) \rightarrow H_{p}(x, A) \rightarrow H_{p}(A) \Rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(x) \rightarrow H_{p}(x, A) \rightarrow H_{p}(A) \Rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(x) \rightarrow H_{p}(x, A) \rightarrow H_{p}(A) \Rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(x) \rightarrow H_{p}(x, A) \rightarrow H_{p}(A) \Rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(X) \rightarrow H_{p}(X, A) \rightarrow H_{p}(A) \Rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(X) \rightarrow H_{p}(X, A) \rightarrow H_{p}(A) \rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(X) \rightarrow H_{p}(X, A) \rightarrow H_{p}(A) \rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(A) \rightarrow H_{p}(X) \rightarrow H_{p}(X, A) \rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(X) \rightarrow H_{p}(X, A) \rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(X) \rightarrow$$

$$= H_{p+1}(x, A) \rightarrow H_{p}(X) \rightarrow$$